Abstract
Large covariance matrices play a fundamental role in various high-dimensional statistics. Investigating the limiting behavior of the eigenvalues can reveal informative structures of large covariance matrices, which is particularly important in high-dimensional principal component analysis and covariance matrix estimation. In this paper, we propose a framework to test the number of distinct population eigenvalues for large covariance matrices, i.e. the order of a Population Spectral Distribution. The limiting distribution of our test statistic for a Population Spectral Distribution of order 2 is developed along with its (N,p) consistency, which is clearly demonstrated in our simulation study. We also apply our test to two classical microarray datasets.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.