Abstract

This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions p1 and p2 when the dimensions p = p1 + p2 and the sample size n tend to infinity simultaneously and proportionally. Both theoretical and simulation results demonstrate that the traditional χ2 approximation of the LRT performs poorly when the dimension p is large relative to the sample size n, while the corrected LRT and large-dimensional trace criterion behave well when the dimension is either small or large relative to the sample size. Moreover, the trace criterion can be used in the case of p > n, while the corrected LRT is unfeasible due to the loss of definition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.