Abstract
The article derives Bartlett corrections for improving the chi-square approximation to the likelihood ratio statistics in a class of symmetric nonlinear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. In this paper we present, in matrix notation, Bartlett corrections to likelihood ratio statistics in nonlinear regression models with errors that follow a symmetric distribution. We generalize the results obtained by Ferrari, S. L. P. and Arellano-Valle, R. B. (1996). Modified likelihood ratio and score tests in linear regression models using the t distribution. Braz. J. Prob. Statist., 10, 15–33, who considered a t distribution for the errors, and by Ferrari, S. L. P. and Uribe-Opazo, M. A. (2001). Corrected likelihood ratio tests in a class of symmetric linear regression models. Braz. J. Prob. Statist., 15, 49–67, who considered a symmetric linear regression model. The formulae derived are simple enough to be used analytically to obtain several Bartlett corrections in a variety of important models. We also present simulation results comparing the sizes and powers of the usual likelihood ratio tests and their Bartlett corrected versions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.