Abstract
We consider an i.i.d. sample, generated by some distribution function, which belongs to the domain of attraction of an extreme value distribution with unknown shape and scale parameters. We treat the scale parameter as a nuisance parameter and establish for the hypothesis of Gumbel domain of attraction an asymptotically optimal test based on those observations among the sample, which exceed a given threshold sequence. Asymptotic optimality is achieved along certain contiguous extreme value alternatives within the concept of local asymptotic normality (LAN). Adaptive test procedures exist under restrictive assumptions. The finite sample size behavior of the proposed test is studied by simulations and it is compared to that of a test based on the sample coefficient of variation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.