Abstract
We summarize methodology for testing the compatibility of discrete time stochastic processes—stationary and nonstationary Markov chains and an extension, the mover-stayer model—with longitudinal data from an unknown empirical process. We apply this methodology to determine the suitability of these models to represent the payment behavior of a sample of retail revolving credit accounts. We are led to reject stationary and also nonstationary Markov chain models for our data and for our state space definition in favor of the mover-stayer model. The mover-stayer model, in contrast to Markov chains, incorporates a simple form of population heterogeneity. Stationary Markov chains have been used extensively in finance literature to model payment behavior of credit accounts. Our empirical study suggests, however, that stationary Markov chains may not appropriately model payment behavior. It also indicates that incorporating heterogeneity in modeling payment behavior may be more important than incorporing nonstationarity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.