Abstract

Plate counts using selective culture media is still the most frequently used method for the enumeration of the different microbial groups that colonize silage, including lactic acid bacteria, yeasts and molds. Since different culture media have specific composition, they may allow the growth of specific populations. To date, no study has used next generation sequencing technology to compare the selective capacity of these different culture media although this approach could provide comprehensive insight into the relevance of using one culture medium over another. Sequencing of the 16S rDNA and ITS amplicon were performed to compare the selectivity of different culture media used in silage microbiology. Corn silage, grass-alfalfa silage and total mixed ration extracts were plated on five selective media for lactic acid bacteria, incubated under aerobic and anaerobic conditions, and on eight selective media for yeast and molds to compare their selectivity. Ensiling provided a pre-selection environment for specific microorganisms over forage and reduced the number of observed OTUs: only 12 OTUs of bacteria were observed in corn silage sampled in the center of a bunker silo, while the mean number of OTUs identified in samples taken closer to the side of the silo, influenced by higher oxygen and humidity level, increased to 79. Still, MRS and Rogosa plates had less than 12 different OTUs in the center and 24 at the side, mainly Lactobacillaceae, Acetobacteraceae, and Leuconostocaceae. Incubating the plates under anaerobic conditions was selective against Acetobacteraceae. MRS supplemented with acetic acid increased selectivity of lactic acid bacteria. When plated on culture media specific for yeast and molds, from 17 to 68 different OTUs were observed in corn silage. Mixed grass-alfalfa silage and total mixed ration samples usually had more observed OTUs and the diversity profile of the corresponding culture media was similar to that of the original samples. For yeasts and molds, Dichloran Rose Bengal Chloramphenicol Agar revealed a diversity profile close to the that of the corn silage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call