Abstract

Semiclassical theories similar to stochastic electrodynamics are widely used in optics. The distinguishing feature of such theories is that the quantum uncertainty is represented by random statistical fluctuations. They can successfully predict some quantum-mechanical phenomena; for example, the squeezing of the quantum uncertainty in the parametric oscillator. However, since such theories are not equivalent to quantum mechanics, they will not always be useful. Complex number representations can be used to exactly model the quantum uncertainty, but care has to be taken that approximations do not reduce the description to a hidden variable one. This paper helps show the limitations of ``semiclassical theories,'' and helps show where a true quantum-mechanical treatment needs to be used. Third-order correlations are a test that provides a clear distinction between quantum and hidden variable theories in a way analogous to that provided by the ``all or nothing'' Greenberger-Horne-Zeilinger test of local hidden variable theories. \textcopyright{} 1996 The American Physical Society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.