Abstract

The interference pattern in electron double-slit diffraction is a hallmark of quantum mechanics. A long-standing question for stochastic electrodynamics (SED) is whether or not it is capable of reproducing such effects, as interference is a manifestation of quantum coherence. In this study, we used excited harmonic oscillators to directly test this quantum feature in SED. We used two counter-propagating dichromatic laser pulses to promote a ground-state harmonic oscillator to a squeezed Schrödinger cat state. Upon recombination of the two well-separated wavepackets, an interference pattern emerges in the quantum probability distribution but is absent in the SED probability distribution. We thus give a counterexample that rejects SED as a valid alternative to quantum mechanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.