Abstract

The results of a Machine Learning-based method is presented here to investigate the scaling properties of the final state charged hadron and mean jet multiplicity distributions. Deep residual neural network architectures with different complexities are utilized to predict the final state multiplicity distribution from the parton-level final state, generated by the Pythia Monte Carlo event generator. Hadronization networks were trained by √s = 7 TeV events, while predictions have been made for various LHC energies from √s = 0.9 TeV to 13 TeV. Scaling properties were adopted by the networks at hadronic level, indeed KNO-scaling is preserved—although, the scaling of the mean jet multiplicity distributions varies for the applied models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.