Abstract
We propose a general nonparametric approach for testing hypotheses about the spectral density matrix of multivariate stationary time series based on estimating the integrated deviation from the null hypothesis. This approach covers many important examples from interrelation analysis such as tests for noncorrelation or partial noncorrelation. Based on a central limit theorem for integrated quadratic functionals of the spectral matrix, we derive asymptotic normality of a suitably standardized version of the test statistic under the null hypothesis and under fixed as well as under sequences of local alternatives. The results are extended to cover also parametric and semiparametric hypotheses about spectral density matrices, which includes as examples goodness-of-fit tests and tests for separability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.