Abstract

AbstractMantle convection plays a fundamental role in driving evolution of oceanic and continental lithosphere. In turn it impacts a broad suite of processes operating at or close to Earth's surface including landscape evolution, glacio‐eustasy, magmatism, and climate. A variety of theoretical approaches now exist to simulate mantle convection. Outputs from such simulations are being used to parameterize models of landscape evolution and basin formation. However, the substantial body of existing simulations has generated a variety of conflicting views on the history of dynamic topography, its evolution and key parameters for modeling mantle flow. The focus of this study is on developing strategies to use large‐scale quantitative stratigraphic observations to assess model predictions and identify simulation parameters that generate realistic predictions of Earth surface evolution. Spot measurements of uplift or subsidence provide useful target observations for models of dynamic topography, but finding areas where tectonics have not also influenced vertical motions is challenging. To address this issue, we use large inventories of stratigraphic data from across North America with contextual geophysical and geodetic data to constrain the regional uplift and subsidence history. We demonstrate that a suite of typical geodynamic simulations struggle to match the amplitude, polarity and timing of observed vertical motions. Building on recent seismological advances, we then explore strategies for understanding patterns of continental uplift and subsidence that incorporate (and test) predicted evolution of the lithosphere, asthenosphere and deep mantle. Our results demonstrate the importance of contributions from the uppermost mantle in driving vertical motions of continental interiors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.