Abstract
Bell's inequality is established based on local realism. The violation of Bell's inequality by quantum mechanics implies either locality or realism or both are untenable. Leggett's inequality is derived based on nonlocal realism. The violation of Leggett's inequality implies that quantum mechanics is neither local realistic nor nonlocal realistic. The incompatibility of nonlocal realism and quantum mechanics has been currently confirmed by photon experiments. In our work, we propose to test Leggett's inequality using the Aharonov-Casher effect. In our scheme, four entangled particles emitted from two sources manifest a two-qubit-typed correlation that may result in the violation of the Leggett inequality, while satisfying the no-signaling condition for spacelike separation. Our scheme is tolerant to some local inaccuracies due to the topological nature of the Aharonov-Casher phase. The experimental implementation of our scheme can be possibly realized by a calcium atomic polarization interferometer experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.