Abstract

In quantum mechanics, joint measurements of non-commuting observables are only possible if a minimal unavoidable measurement uncertainty is accepted. On the other hand, correlations between non-commuting observables can exceed classical limits, as demonstrated by the violation of Bell's inequalities. Here, the relation between the uncertainty limited statistics of joint measurements and the limits on expectation values of possible input states is analyzed. It is shown that the experimentally observable statistics of joint measurements explain the uncertainty limits of local states, but result in less restrictive bounds when applied to identify the limits of non-local correlations between two separate quantum systems. A tight upper bound is obtained for the four correlations that appear in the violation of Bell's inequalities and the statistics of pure states saturating the bound is characterized. The results indicate that the limitations of quantum non-locality are a necessary consequence of the local features of joint measurements, suggesting the possibility that quantum non-locality could be explained in terms of the local characteristics of quantum statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.