Abstract
We consider the testing problem in the mixed-effects functional analysis of variance models. We develop asymptotically optimal (minimax) testing procedures for testing the significance of functional global trend and the functional fixed effects based on the empirical wavelet coefficients of the data. Wavelet decompositions allow one to characterize various types of assumed smoothness conditions on the response function under the nonparametric alternatives. The distribution of the functional random-effects component is defined in the wavelet domain and captures the sparseness of wavelet representation for a wide variety of functions. The simulation study presented in the paper demonstrates the finite sample properties of the proposed testing procedures. We also applied them to the real data from the physiological experiments.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have