Abstract
We propose nonnested tests for competing conditional moment restriction models using the method of conditional empirical likelihood, recently developed by Kitamura, Tripathi, and Ahn (2004) and Zhang and Gijbels (2003). To define the test statistics, we use the implied conditional probabilities from conditional empirical likelihood, which take into account the full implications of conditional moment restrictions. We propose three types of nonnested tests: the moment-encompassing, Cox-type, and efficient score-encompassing tests. We derive the asymptotic null distributions and investigate their power properties against a sequence of local alternatives and a fixed global alternative. Our tests have distinct global power properties from some of the existing tests based on finite-dimensional unconditional moment restrictions. Simulation experiments show that our tests have reasonable finite sample properties and dominate some of the existing nonnested tests in terms of size-corrected powers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.