Abstract

Many statistical models, e.g. regression models, can be viewed as conditional moment restrictions when distributional assumptions on the error term are not assumed. For such models, several estimators that achieve the semiparametric efficiency bound have been proposed. However, in many studies, auxiliary information is available as unconditional moment restrictions. Meanwhile, we also consider the presence of missing responses. We propose the combined empirical likelihood (CEL) estimator to incorporate such auxiliary information to improve the estimation efficiency of the conditional moment restriction models. We show that, when assuming responses are strongly ignorable missing at random, the CEL estimator achieves better efficiency than the previous estimators due to utilization of the auxiliary information. Based on the asymptotic property of the CEL estimator, we also develop Wilks’ type tests and corresponding confidence regions for the model parameter and the mean response. Since kernel smoothing is used, the CEL method may have difficulty for problems with high dimensional covariates. In such situations, we propose an instrumental variable-based empirical likelihood (IVEL) method to handle this problem. The merit of the CEL and IVEL are further illustrated through simulation studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.