Abstract

To test for equality of variances in independent random samples from multiple univariate normal populations, the test of first choice would usually be the likelihood ratio test, the Bartlett test. This test is known to be powerful when normality can be assumed. Here two Wald tests of equality of variances are derived. The first test compares every variance with every other variance and was announced in Mather and Rayner (2002), but no proof was given there. The second test is derived from a quite different model using orthogonal contrasts, but is identical to the first. This second test statistic is similar to one given in Rippon and Rayner (2010), for which no empirical assessment has been given. These tests are compared with the Bartlett test in size and power. The Bartlett test is known to be nonrobust to the normality assumption, as is the orthogonal contrasts test. To deal with this difficulty an analogue of the new test is given. An indicative empirical assessment shows that it is more robust than t...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.