Abstract

ABSTRACTWe revisit the problem of testing homoscedasticity (or, equality of variances) of several normal populations which has applications in many statistical analyses, including design of experiments. The standard text books and widely used statistical packages propose a few popular tests including Bartlett's test, Levene's test and a few adjustments of the latter. Apparently, the popularity of these tests have been based on limited simulation study carried out a few decades ago. The traditional tests, including the classical likelihood ratio test (LRT), are asymptotic in nature, and hence do not perform well for small sample sizes. In this paper we propose a simple parametric bootstrap (PB) modification of the LRT, and compare it against the other popular tests as well as their PB versions in terms of size and power. Our comprehensive simulation study bursts some popularly held myths about the commonly used tests and sheds some new light on this important problem. Though most popular statistical software/packages suggest using Bartlette's test, Levene's test, or modified Levene's test among a few others, our extensive simulation study, carried out under both the normal model as well as several non-normal models clearly shows that a PB version of the modified Levene's test (which does not use the F-distribution cut-off point as its critical value), and Loh's exact test are the “best” performers in terms of overall size as well as power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.