Abstract

We propose quantum circuits to test interferometric complementarity using symmetric two-way interferometers coupled to a which-path detector. First, we consider the two-qubit setup in which the controlled transfer of path information to the detector subsystem depletes interference on the probed subspace, testing the visibility-distinguishability tradeoff via minimum-error state discrimination measurements. Next, we consider the quantum eraser setup, in which reading out path information in the right basis recovers an interference pattern. These experiments are then carried out in an IBM superconducting transmon processor. A detailed analysis of the results is provided. Despite finding good agreement with theory at a coarse level, we also identify small but persistent systematic deviations preventing the observation of full particlelike and wavelike statistics. We understand them by carefully modeling two-qubit gates, showing that even small coherent errors in their implementation preclude the observation of Bohr's strong formulation of complementarity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.