Abstract

Magnetic shielding devices with a grid structure of multiple layers of highly magnetically permeable materials (such as permalloy) can achieve remanent magnetic fields at the nanotesla (nT) level or even lower. The remanence of the material inside the magnetic shield, such as the building materials used in the support structure, can cause serious damage to the internal remanence of the magnetic shield. Therefore, it is of great significance to detect the remanence of the materials used inside the magnetic shielding device. The existing test methods do not limit the test environment, the test process is vulnerable to additional magnetic field interference and did not consider the real results of the material in the weak magnetic environment. In this paper, a novel method of measuring the remanence of materials in a magnetic shielding cylinder is proposed, which prevents the interference of the earth's magnetic field and reduces the measurement error. This method is used to test concrete components, composite materials and metal materials commonly applicated in magnetic shielding devices and determine the materials that can be used for magnetic shielding devices with 1 nT, 10 nT and 100 nT as residual magnetic field targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call