Abstract

The magnetic shielding device is used to provide an extreme weak magnetic field, which plays a key role in variety of fields. Since the high-permeability material constituting the magnetic shielding device determines the magnetic shielding performance, it is important to evaluate the property of the high-permeability material. In this paper, the relationship between the microstructure and the magnetic properties of the high-permeability material is analyzed using minimum free energy principle based on magnetic domain theory, and the test method of the material's microstructure including the material composition, the texture and the grain structure to reflect the magnetic properties is put forward. The test result shows that the grain structure is closely related to the initial permeability and the coercivity, which is highly consistent with the theory. As a result, it provides a more efficient way to evaluate the property of the high-permeability material. The test method proposed in the paper has important significance in the high efficiency sampling inspection of the high-permeability material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.