Abstract

Abstract Wildlife managers have recently suggested the use of unmanned aircraft systems or drones as nonlethal hazing tools to deter birds from areas of human-wildlife conflict. However, it remains unclear if birds perceive common drone platforms as threatening. Based on field studies assessing behavioral and physiological responses, it is generally assumed that birds perceive less risk from drones than from predators. However, studies controlling for multiple confounding effects have not been conducted. Our goal was to establish the degree to which the perception of risk by birds would vary between common drone platforms relative to a predator model when flown at different approach types. We evaluated the behavioral responses of individual Red-winged Blackbirds (Agelaius phoeniceus) to 3 drone platforms: a predator model, a fixed-wing resembling an airplane, and a multirotor, approaching either head-on or overhead. Blackbirds became alert earlier (by 13.7 s), alarm-called more frequently (by a factor of 12), returned to forage later (by a factor of 4.7), and increased vigilance (by a factor of 1.3) in response to the predator model compared with the multirotor. Blackbirds also perceived the fixed-wing as riskier than the multirotor, but less risky than the predator model. Overhead approaches mostly failed to elicit flight in blackbirds across all platform types, and no blackbirds took flight in response to the multirotor at either overhead or head-on approaches. Our findings demonstrate that birds perceived drones with predatory characteristics as riskier than common drone models (i.e. fixed-wing and multirotor platforms). We recommend that drones be modified with additional stimuli to increase perceived risk when used as frightening devices, but avoided if used for wildlife monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.