Abstract

In a number of species, consistent behavioral differences between individuals have been described in standardized tests, e.g., novel object, open field test. Different behavioral expressions are reflective of different coping strategies of individuals in stressful situations. A causal link between behavioral responses and the activation of the physiological stress response is assumed but not thoroughly studied. Also, most standard paradigms investigating individual behavioral differences are framed in a fearful context, therefore the present study aimed to add a test in a more positive context, the feeding context. We assessed individual differences in physiological [heart rate (HR)] and behavioral responses (presence or absence of pawing, startle response, defecation, snorting) of 20 domestic horses (Equus caballus) in two behavioral experiments, a novel object presentation and a pre-feeding excitement test. Experiments were conducted twice, once between July and August, and once between September and October. Both experiments caused higher mean HR in the first 10 s after stimulus presentation compared to a control condition, but mean HR did not differ between the experimental conditions. In the novel object experiment, horses displaying stress-related behaviors during the experiments also showed a significantly higher HR increase compared to horses which did not display any stress-related behaviors, reflecting a correlation between behavioral and physiological responses to the novel object. On the contrary, in the pre-feeding experiments, horses that showed fewer behavioral responses had a greater HR increase, indicating the physiological response being due to emotional arousal and not behavioral activity. Moreover, HR response to experimental situations varied significantly between individuals. Individual average HR was significantly repeatable across both experiments, whereas HR increase was only significantly repeatable during the novel object and not the pre-feeding experiment. Conversely, behavioral response was not repeatable. In conclusion, our findings show that horses’ behavioral and physiological responses differed between test situations and that emotional reactivity, shown via mean HR and HR increase, is not always displayed behaviorally, suggesting that behavioral and physiological responses may be regulated independently according to context.

Highlights

  • Repeatable individual variation of physiological and/or behavioral responses across time and contexts, known as personality or temperament, has been very much in focus of scientific research in recent years and was described in a vast variety of species, including horses (Equus caballus) (Goldsmith et al, 1987; Le Scolan et al, 1997; Momozawa et al, 2005; Cockrem, 2007; Lansade et al, 2008; Grajfoner et al, 2010; Olczak et al, 2018)

  • Average Heart Rate Average heart rate (HR) of the horses was significantly higher during the novel object experiment compared to the control period (Tukey: z = 4.980, p < 0.001; Figures 4A, 5) and tended to be higher during the pre-feeding excitement compared to the control period (Tukey: z = 2.104, p = 0.083; Figures 1A, 5)

  • Average HR during the novel object experiment was significantly lower in the group of horses showing a low behavioral response compared to horses showing a high behavioral response (GLMM1: z = −3.66, p < 0.001; Figure 4A)

Read more

Summary

Introduction

Repeatable individual variation of physiological and/or behavioral responses across time and contexts, known as personality or temperament, has been very much in focus of scientific research in recent years and was described in a vast variety of species, including horses (Equus caballus) (Goldsmith et al, 1987; Le Scolan et al, 1997; Momozawa et al, 2005; Cockrem, 2007; Lansade et al, 2008; Grajfoner et al, 2010; Olczak et al, 2018). Meaney (2001) showed how adult rats (Rattus norvegicus) are more fearful and sensitive to stress if they were raised in the first 8 days of their life by mothers that licked their body and anogenital regions in a frequency lower to the average of the cohort. Rats raised by mothers performing a higher-than-average frequency of body and anogenital region licking showed lower fearfulness and sensitivity to stress in adulthood. Animals can be bred to either show high or low responsiveness to stressors, indicating that individual differences in stress-responsiveness are heritable (Flaherty and Rowan, 1989; Carere et al, 2003). Studies on great tits (Parus major) have shown individual physiological stress responses to be related to differences in exploration strategies (Carere and van Oers, 2004) and heritable throughout four generations (Drent et al, 2003)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call