Abstract

Transaction-level modeling (TLM) has become the de-facto reference modeling style for system-level design and verification of embedded systems. It allows designers to implement high-level communication protocols for simulations up to $1000 \times $ faster than at register-transfer level (RTL). To guarantee interoperability between TLM IP suppliers and users, designers implement the TLM communication protocols by relying on a reference standard, such as the standard OSCI for SystemC TLM. Functional correctness of such protocols as well as their compliance to the reference TLM standard are usually verified through user-defined testbenches, whose high quality and completeness play a key role for an efficient TLM design and verification flow. This article presents a methodology to apply mutation analysis, a technique applied in literature for SW testing, for measuring the testbench quality in verifying TLM protocols. In particular, the methodology aims at (i) qualifying the testbenches by considering both the TLM protocol correctness and their compliance to a defined standard (i.e., OSCI TLM), (ii) optimizing the simulation time during mutation analysis by avoiding mutation redundancies, and (iii) driving the designers in the testbench improvement. Experimental results on benchmarks of different complexity and architectural characteristics are reported to analyze the methodology applicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.