Abstract

A high-temperature test rig to simultaneously measure electrical conductivity and thermopower is described. The apparatus allows to perform measurements in a controlled atmosphere or vacuum to protect oxygen-sensitive materials. A spring-loaded mounting placed in the cold zone reduces the thermal contact resistance between the sample and two metallic blocks (the hot side and the heat sink) even at high temperatures. The hot-side metal block is periodically heated to obtain the thermopower from the slope of ΔV versus ΔT. Conductivity is measured before each thermopower measurement by a linear four-wire method. The automatic data acquisition and analysis are controlled by a LabView-based interface. Two interchangeable setups are possible. The first one uses silver blocks and K-type thermocouples and is suitable for temperatures from 300 K to about 1000 K. The second one uses W blocks and S-type thermocouples to allow higher-temperature measurements since all the hot-zone parts are made of Al2O3, Pt or W. The device was tested using PdAg alloy and Ni rods and, for the low-temperature range, the NIST standard reference material 3451 (bismuth telluride), strictly confirming the reference data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.