Abstract

The binaural interaction component (BIC) is the residual auditory brainstem response (ABR) obtained after subtracting the sum of monaurally evoked from binaurally evoked ABRs. The DN1 peak-the first negative peak of the BIC-has been postulated to have diagnostic value as a biomarker for binaural hearing abilities. Indeed, not only do DN1 amplitudes depend systematically upon binaural cues to location (interaural time and level differences), but they are also predictive of central hearing deficits in humans. A prominent issue in using BIC measures as a diagnostic biomarker is that DN1 amplitudes not only exhibit considerable variability across subjects, but also within subjects across different measurement sessions. In this study, the authors investigate the DN1 amplitude measurement reliability by conducting repeated measurements on different days in eight adult guinea pigs. Despite consistent ABR thresholds, ABR and DN1 amplitudes varied between and within subjects across recording sessions. However, the study analysis reveals that DN1 amplitudes varied proportionally with parent monaural ABR amplitudes, suggesting that common experimental factors likely account for the variability in both waveforms. Despite this variability, the authors show that the shape of the dependence between DN1 amplitude and interaural time difference is preserved. The authors then provide a BIC normalization strategy using monaural ABR amplitude that reduces the variability of DN1 peak measurements. Finally, the authors evaluate this normalization strategy in the context of detecting changes of the DN1 amplitude-to-interaural time difference relationship. The study results indicate that the BIC measurement variability can be reduced by a factor of two by performing a simple and objective normalization operation. The authors discuss the potential for this normalized BIC measure as a biomarker for binaural hearing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.