Abstract

This research investigated whether brainstem neural mechanisms that mediate lateralization of sounds can be extracted from the frequency-following response (FFR). Monaural and binaural FFRs were obtained from normal-hearing subjects to low-frequency (500 Hz) linearly gated tone bursts (4-4-4 msec) at 40, 50, and 60 dB SL and four interaural time differences (ITDs) (0, 333, 500, and 667 microsec). FFRs were also recorded to ITDs and intensity presented in concert and in opposition (lateralization stimuli). The results show that overall intensity and interaural time differentially affect the FFR. The FFRs evoked by ITDs and intensity (in concert and in opposition) are strikingly different. The normalized amplitudes of the binaural interaction component (BIC) are minimally altered by ITDs and intensity. The study presents strong evidence that ITDs of 0, 333, 500, and 667 microsec and lateralization stimuli, easily discriminated perceptually, evoke clearly distinguishable FFR waveforms. These ITDs provide the cues that mammals use to localize sound in a freefield. The BIC is essentially unaffected by overall intensity, ITDs, and lateralization stimuli. Based on the findings of this study, the FFR has the potential to become a tool for identification of normal and abnormal binaural processing at lower brainstem levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call