Abstract

The Einstein Equivalence Principle (EEP) is one of the foundations of the theory of General Relativity and several alternative theories of gravitation predict violations of the EEP. Experimental constraints on this fundamental principle of nature are therefore of paramount importance. The EEP can be split into three sub-principles: the universality of free fall (UFF), the local Lorentz invariance (LLI) and the local position invariance (LPI). In this paper we propose to use stable clocks in eccentric orbits to perform a test of the gravitational redshift, a consequence of the LPI. The best test to date was performed with the Gravity Probe A (GP-A) experiment in 1976 with an uncertainty of Our proposal considers the opportunity of using Galileo satellites 5 and 6 to improve on the GP-A test uncertainty. We show that considering realistic noise and systematic effects, and thanks to a highly eccentric orbit, it is possible to improve on the GP-A limit to an uncertainty around after one year of integration of Galileo 5 and 6 data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.