Abstract

An approach to test-pattern generation for synchronous sequential circuits is presented. The deterministic sequential test-generation algorithm, based on extensions to the PODEM justification algorithm, is effective for midsized sequential circuits and can be used in conjunction with an incomplete scan design approach to generate tests for very large sequential circuits. Tests for finite-state machines with a large number of states have been successfully generated using reasonable amounts of CPU time and close-to-maximum possible fault coverages have been obtained. For very large sequential circuits, an incomplete scan-design approach to test generation has been developed. The deterministic test generation algorithm is again used to generate test for faults in the modified circuit. All irredundant faults can be detected as in the complete scan design case, but at significantly less area and performance cost. The length of the test sequences for the faults can be bounded by a prescribed value-in general, a tradeoff exists between the number of memory elements required to be made scannable and the maximum allowed length of the test sequence.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call