Abstract

This paper studies test dynamics method of non-full loading firing for multiple launch rocket system (MLRS) and provides a new test method for reducing rocket consumption in MLRS firing precision test. Based on the theories of launch dynamics and Rui method, namely the transfer matrix method for multibody systems (MSTMM), launch dynamics model, characteristic equations and dynamics response equations of MLRS are established. The launch and flight dynamic simulation system for MLRS is developed combining the Monte Carlo simulation technology. The simulated results of vibration characteristics, rocket initial disturbance, and firing precision are verified by modal test, pulse thrust test and firing test, which show the simulation system can more accurately reflect the dynamic characteristics of the actual system and its dynamics computation has sufficient accuracy. The relationship between the initial state of MLRS and the mean value and median error of the impact points are established. Based on the idea of equal initial disturbance, non-full loading firing test dynamics method is presented for reducing the rocket consumption in firing precision test, by optimizing the loading position, firing orders and firing intervals of the rockets. For a practical MLRS, a seven-shot test scheme is designed and tested. The experimental results show that the amount of the rockets in firing precision test is reduce by 61% compared with the conventional test method, which saves a lot of testing costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call