Abstract
This article discusses the application of an improved version of the firefly algorithm for the test suite optimization problem. Software test optimization refers to optimizing test data generation and selection for structural testing criteria for white box testing. This will subsequently reduce the two most costly activities performed during testing: time and cost. Recently, various search-based approaches proved very interesting results for the software test optimization problem. Also, due to no free lunch theorem, scientists are continuously searching for more efficient and convergent methods for the optimization problem. In this paper, firefly algorithm is modified in a way that local search ability is improved. Levy flights are incorporated into the firefly algorithm. This modified algorithm is applied to the software test optimization problem. This is the first application of Levy-based firefly algorithm for software test optimization. Results are shown and compared with some existing metaheuristic approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.