Abstract
AbstractWe associate to a test configuration for a polarized variety a filtration of the section ring of the line bundle. Using the recent work of Boucksom and Chen we get a concave function on the Okounkov body whose law with respect to Lebesgue measure determines the asymptotic distribution of the weights of the test configuration. We show that this is a generalization of a well-known result in toric geometry. As an application, we prove that the pushforward of the Lebesgue measure on the Okounkov body is equal to a Duistermaat–Heckman measure of a certain deformation of the manifold. Via the Duisteraat–Heckman formula, we get as a corollary that in the special case of an effective ℂ×-action on the manifold lifting to the line bundle, the pushforward of the Lebesgue measure on the Okounkov body is piecewise polynomial.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have