Abstract
Random tessellations and cellular structures occur in many domains of application, such as astrophysics, ecology, telecommunications, biochemistry and naturally cellular biology (see Stoyan, Kendall and Mecke 1987 or Okabe, Boots, Sugihara and Chiu 2000 for complete surveys). The theoretical study of these objects was initiated in the second half of the twentieth century by D. G. Kendall, J. L. Meijering, E. N. Gilbert and R. E. Miles, notably. Two isotropic and stationary models have emerged as the most basic and useful: the Poisson hyperplane tessellation and the Poisson–Voronoi tessellation. Since then, a large majority of questions raised about random tessellations have concerned statistics of the population of cells (‘how many cells are triangles in the plane?’, ‘how many cells have a volume greater than one?’) or properties of a specific cell (typically the one containing the origin). Two types of results are presented below: exact distributional calculations and asymptotic estimations. In the first part, we describe the two basic constructions of random tessellations (i.e. by throwing random hyperplanes or by constructing Voronoi cells around random nuclei) and we introduce the fundamental notion of typical cell of a stationary tessellation. The second part is devoted to the presentation of exact distributional results on basic geometrical characteristics (number of hyperfaces, typical k‐face, etc.). The following part concerns asymptotic properties of the cells. It concentrates in particular on the well‐known D. G. Kendall conjecture which states that large planar cells in a Poisson line tessellation are close to the circular shape. In the last part, we present some recent models of iterated tessellations which appear naturally in applied fields (study of crack structures, telecommunications). Intentionally, this chapter does not contain an exhaustive presentation of all the models of random tessellations existing in the literature (in particular, dynamical constructions such as Johnson‐Mehl tessellations will be omitted). The aim of the text below is to provide a selective view of recent selected methods and results on a few specific models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.