Abstract
We observe stationary random tessellations X={Ξn}n≥1 in ℝd through a convex sampling window W that expands unboundedly and we determine the total (k−1)-volume of those (k−1)-dimensional manifold processes which are induced on the k-facets of X (1≤k≤d−1) by their intersections with the (d−1)-facets of independent and identically distributed motion-invariant tessellations Xn generated within each cell Ξn of X. The cases of X being either a Poisson hyperplane tessellation or a random tessellation with weak dependences are treated separately. In both cases, however, we obtain that all of the total volumes measured in W are approximately normally distributed when W is sufficiently large. Structural formulae for mean values and asymptotic variances are derived and explicit numerical values are given for planar Poisson–Voronoi tessellations (PVTs) and Poisson line tessellations (PLTs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.