Abstract
The deep terrestrial biosphere encompasses the life below the photosynthesis-fueled surface that perseveres in typically nutrient and energy depleted anoxic groundwaters. The composition and cycling of this vast dissolved organic matter (DOM) reservoir relevant to the global carbon cycle remains to be deciphered. Here we show that recent Baltic Sea-influenced to ancient pre-Holocene saline Fennoscandian Shield deep bedrock fracture waters carried DOM with a strong terrigenous signature and varying contributions from abiotic and biotic processes. Removal of easily degraded carbon at the surface-to-groundwater transition and corresponding microbial community assembly processes likely resulted in the highly similar DOM signatures across the notably different water types that selected for a core microbiome. In combination with the aliphatic character, depleted δ13C signatures in DOM indicated recent microbial production in the oldest, saline groundwater. Our study revealed the persistence of terrestrially-sourced carbon in severely energy limited deep continental groundwaters supporting deep microbial life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.