Abstract
This paper reports comparative characterizations of calcium phosphate crystals grown on earth and in space. At the CaCl 2 and KH 2PO 4+K 2HPO 4 solution concentrations and the pH used, only hydroxyapatite (HAP) crystals grow under terrestrial condition while both HAP and octacalcium phosphate (OCP) crystals grew during the space experiment. The space-grown OCP crystals reach 3 mm in size, the space-grown HAP crystals reach sizes up to 100 times larger than the earth-grown crystallites. It was found also that the space-grown crystallites are more perfect than the terrestrial ones, being more stable under electron beam during HRTEM examination. Spherolites of hydroxyapatite consist of small and thin HAP crystals with different orientations. Space-grown OCP crystals containing almost pure OCP phase show strong striations along the c direction due to thickness variations. Terrestrial OCP crystals grown at lowest supersaturation on earth may be almost as large as the space-grown ones, possess a regular habit and are homogeneous in thickness. However, they always contain substantial regions of HAP structure. Also, in these crystals electron irradiation induces phase transformation from crystalline to amorphous (disordered) state during transmission electron microscopy observations. In the space-grown crystals, such transformation needs longer radiation time. We believe that the differences described above come from much lower supersaturation and different pH for crystals nucleating and growing in space compared to those formed on earth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.