Abstract

Three-dimensional laser range finders provide autonomous systems with vast amounts of information. However, autonomous robots navigating in unstructured environments are usually not interested in every geometric detail of their surroundings. Instead, they require real-time information about the location of obstacles and the condition of drivable areas.In this paper, we first present grid-based algorithms for classifying regions as either drivable or not. In a subsequent step, drivable regions are further examined using a novel algorithm which determines the local terrain roughness. This information can be used by a path planning algorithm to decide whether to prefer a rough, muddy area, or a plain street, which would not be possible using binary drivability information only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.