Abstract

The release of a digital elevation model (DEM) for Australia on a 9″ (∼250 m) grid has enabled the computation of gravimetric terrain corrections thus allowing the computation of complete Bouguer anomalies across the continent. The terrain correction was calculated through a two‐dimensional fast Fourier transform algorithm applied to a linear, planar approximation of the terrain‐correction formula, and with a constant topographic density of 2670 kg.m‐3. The technique was applied to two datasets in order to test for instabilities in the terrain‐correction algorithm: the original 9″ DEM, and a 27″ DEM averaged from the 9″ data. The 27″ terrain corrections were compared with values supplied by the Australian Geological Survey Organisation in Tasmania: 86% of these data were found to agree within 3.91 μm.s‐2; 98% agreed to within 5.32 μm.s‐2 (1σ).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.