Abstract

The present study reports for the first time, a novel disinfection method that combines ultrasonication with a natural biocide terpinolene to inhibit tough and opportunistic antimicrobial-resistant (AMR) microorganisms isolated from hospital wastewater treatment plant (HWWTP). The enhancement of the disinfection process was evaluated for the effect of ultrasonication power, operating temperature, and inoculum size. A hybrid methodology combining terpinolene with traditional physico-chemical method of acoustic cavitation delivered efficient disinfection of the secondary effluent of field scale HWWTP, amended with a higher inoculum size of multi-drug-resistant coliform bacteria Enterobactor sp., Citrobacter freundii, and Klebsiella pneumonia. A bacterial load of 6.4 log CFU/mL was completely eliminated in 25min. The present study also reports that due to the hybrid process, a very small concentration of 0.312mM (0.25 × Minimum Inhibitory Concentration or MBC) of terpinolene was enough to completely disinfect the multi-drug-resistant coliforms. The leakage of intracellular nucleic acids during the disinfection process suggested disruption of cell membrane as the primary mechanism of disinfection followed by disruption of cellular metabolic function measured by respiratory chain dehydrogenase activity. Moreover, this study is the first to prove that terpinolene remained stable even after the cavitation process, thus revealing possibilities of recycling of the natural compound for wastewater disinfection. The results of the present research suggest that using terpinolene as a bio-additive can efficiently eliminate hazardous multi-drug-resistant bacteria and drastically reduce operational time and cost thus rendering it suitable to replace conventional wastewater disinfection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call