Abstract

AbstractLet k be a positive integer such that k≡3 mod 4, and let N be a positive square-free integer. In this paper, we compute a basis for the two-dimensional subspace Sk/2(Γ0(4N),F) of half-integral weight modular forms associated, via the Shimura correspondence, to a newform F∈Sk−1(Γ0(N)), which satisfies $L(F,\frac {1}{2})\neq 0$. This is accomplished by using a result of Waldspurger, which allows one to produce a basis for the forms that correspond to a given F via local considerations, once a form in the Kohnen space has been determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.