Abstract

Due to the increasing application of fractional calculus in engineering and biomedical processes, we analyze a new method for the numerical simulation of a large class of coupled systems of fractional-order partial differential equations. In this paper, we study shifted Jacobi polynomials in the case of two variables and develop some new operational matrices of fractional-order integrations as well as fractional-order differentiations. By the use of these operational matrices, we present a new and easy method for solving a generalized class of coupled systems of fractional-order partial differential equations subject to some initial conditions. We convert the system under consideration to a system of easily solvable algebraic equation without discretizing the system, and obtain a highly accurate solution. Also, the proposed method is compared with some other well-known differential transform methods. The proposed method is computer oriented. We useMatLabto perform the necessary calculation. The next two parts will appear soon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.