Abstract

A series of novel ternary TiO2/MgBi2O6/Bi2O3 nanocomposites were synthesized by a facile hydrothermal method. The ternary nanocomposites were characterized by XRD, FESEM, HRTEM, EDX, PL, EIS, Photocurrent, UV–vis DRS, BET, XPS, Raman, and FT-IR analyses. The photocatalytic performance of TiO2 for the degradation of tetracycline antibiotic after combining with MgBi2O6/Bi2O3 was significantly improved, which is 46.1 and 18.5 times higher than pristine TiO2 and MgBi2O6/Bi2O3 photocatalysts, respectively. Furthermore, the ternary photocatalyst efficiently degraded MO, RhB, and MB dye pollutants, which is 22.5, 30.4, and 30.0 as high as TiO2 and 11.2, 14.4, and 17.8 folds larger than MgBi2O6/Bi2O3 photocatalysts, respectively. The photoluminescence and electrochemical analyses confirmed promoted separation and facile transfer of the charges thanks to construction of n-n-p heterojunctions among n-TiO2, n-MgBi2O6, and p-Bi2O3 components and more production of charge carriers due to integration of small band gap MgBi2O6 and Bi2O3 components with wide band gap TiO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.