Abstract
Nanocomposites have garnered attention for their potential as catalysts in electrochemical reactions vital for technologies like fuel cells, water splitting, and metal-air batteries. This work focuses on developing three-dimensional (3D) nanocomposites through aqueous phase exfoliation, non-covalent functionalization of building blocks with surfactants and polymers, and electrostatic interactions in solution leading to the nanocomposites assembly and organization. By combining molybdenum disulfide (MoS2) layers with graphene nanoplatelets (GnPs) to form a binary 2D composite (MoS2/GnP), and subsequently incorporating multiwalled carbon nanotubes (MWNTs) to create ternary 3D composites, we explore their potential as catalysts for the oxygen reduction reaction (ORR) critical in fuel cells. Characterization techniques such as X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffraction elucidate material composition and structure. Our electrochemical studies reveal insights into the kinetics of the reactions and structure–activity relationships. Both the (MoS2/GnP)-to-MWNT mass ratio and nitrogen-doping of GnPs (N-GnPs) play a key role on the electrocatalytic ORR performance. Notably, the (MoS2/N-GnP)/MWNT material, with a 3:1 mass ratio, exhibits the most effective ORR activity. All catalysts demonstrate good long-term stability and methanol crossover tolerance. This facile fabrication method and observed trends offer avenues for optimizing composite electrocatalysts further.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.