Abstract
A ternary logic decoder (TLD) is demonstrated with independently controlled double-gate (ICDG) silicon-nanowire (Si-NW) MOSFETs to confirm a feasibility of mixed radix system (MRS). The TLD is essential component for realization of the MRS. The ICDG Si-NW MOSFET resolves the limitations of the conventional multi-threshold voltage (multi-Vth) schemes required for the TLD. The ICDG Si-NW MOSFETs were fabricated and characterized. Afterwards, their electrical characteristics were modeled and fitted semi-empirically with the aid of SILVACO ATLAS TCAD simulator. The circuit performance and power consumption of the TLD were analyzed using ATLAS mixed-mode TCAD simulations. The TLD showed a power-delay product of 35 aJ for a gate length (LG) of 500 nm and that of 0.16 aJ for LG of 14 nm. Thanks to its inherent CMOS-compatibility and scalability, the TLD based on the ICDG Si-NW MOSFETs would be a promising candidate for a MRS using ternary and binary logic.
Highlights
A ternary logic decoder (TLD) is demonstrated with independently controlled double-gate (ICDG) silicon-nanowire (Si-NW) metal–oxide–semiconductor field-effect transistor (MOSFET) to confirm a feasibility of mixed radix system (MRS)
Thereafter, a P-channel ICDG Si-NW MOSFET was regenerated as a counter-part of the N-channel by simulations
All of the abbreviations and nomenclature of variables are summarized in Supplementary Table S1
Summary
A ternary logic decoder (TLD) is demonstrated with independently controlled double-gate (ICDG) silicon-nanowire (Si-NW) MOSFETs to confirm a feasibility of mixed radix system (MRS). A ternary-based logic circuit reduced the total cost and power consumption by minimizing the number of required inputs, resulting in the simplification of metal interconnection, compared to other MVL s ystems[13].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.