Abstract

In the current analysis, ternary hybrid nanofluid flow with heat transfer under the influence of transpiration and radiation is explored. Partial differential equations (PDEs) of the current work are mapped by using a similarity variable to convert into ordinary differential equations (ODEs) form. The volume fractions of the ternary hybrid nanofluid are used in the entire calculation to achieve better results. The exact investigation of the momentum equation produces the domain value. The impact of thermal radiation is considered under energy equation and solved analytically with solution domain to yield the temperature profile. Graphical representations can be used to evaluate the effects of the factors thermal radiation, heat source or sink, and porous media. The present work is taken into consideration for numerous industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.