Abstract

Purpose The purpose of this study is to forecast the mechanical properties of ternary blended concrete (TBC) modified with oyster shell powder (OSP) and shea nutshell ash (SNA) using deep neural network (DNN) models. Design/methodology/approach DNN models with three hidden layers, each layer containing 5–30 nodes, were used to predict the target variables (compressive strength [CS], flexural strength [FS] and split tensile strength [STS]) for the eight input variables of concrete classes 25 and 30 MPa. The concrete samples were cured for 3–120 days. Levenberg−Marquardt's backpropagation learning technique trained the networks, and the model's precision was confirmed using the experimental data set. Findings The DNN model with a 25-node structure yielded a strong relation for training, validating and testing the input and output variables with the lowest mean squared error (MSE) and the highest correlation coefficient (R) values of 0.0099 and 99.91% for CS and 0.010 and 98.42% for FS compared to other architectures. However, the DNN model with a 20-node architecture yielded a strong correlation for STS, with the lowest MSE and the highest R values of 0.013 and 97.26%. Strong relationships were found between the developed models and raw experimental data sets, with R2 values of 99.58%, 97.85% and 97.58% for CS, FS and STS, respectively. Originality/value To the best of the authors’ knowledge, this novel research establishes the prospects of replacing SNA and OSP with Portland limestone cement (PLC) to produce TBC. In addition, predicting the CS, FS and STS of TBC modified with OSP and SNA using DNN models is original, optimizing the time, cost and quality of concrete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.