Abstract

ContextCotton has a complex branching pattern including sympodial and vegetative branching. Traditionally managed cotton mainly depends on sympodial branching for formation of yield-contributing fruit. Whether seedcotton yield based solely on vegetative branching is comparable with that based solely on sympodial or both types of branching is unclear. ObjectiveThe study determined how terminal removal at first square to avoid formation of sympodial branches (SBs) regulated vegetative branching and yield under different plant densities. MethodsA two-year split-plot design field experiment had main plots with plant density (4.5 and 9.0 plants m−2) and subplots with plant pruning mode. Pruning modes were terminal removal at first square (TRS) to avoid formation of sympodial branches but retain only vegetative branches (VBs), removal of VBs (RVB) to retain only SBs, and no pruning (CK), with both branch types remaining intact. Canopy photosynthesis, dry matter accumulation and partitioning, and seedcotton yield and yield components were examined. ResultsAt low plant density (4.5 plants m−2), compared with other pruning modes, TRS increased seedcotton yield and biological yield but did not affect harvest index. At high plant density (9.0 plants m−2), compared with other pruning modes, TRS decreased seedcotton yield and harvest index, although biological yield increased. The yield increase with TRS at low plant density was attributed to the increase in biological yield, which was due to significantly higher canopy photosynthesis with TRS than with other pruning modes. At high plant density, photosynthesis with TRS was higher than that with no pruning at peak boll-setting and boll-opening stages and higher than that with RVB from peak squaring to boll-opening. Compared with other pruning modes, TRS increased dry matter partitioning to vegetative organs but decreased partitioning to reproductive organs. Pearson correlation analysis revealed a significant positive correlation between canopy apparent photosynthesis and biological yield, biomass partitioning, and harvest index, irrespective of plant pruning and plant density. ConclusionPlant pruning and plant density interacted to affect seedcotton yield. With TRS, cotton yield at low plant density was higher than that with other pruning modes, which was attributed to an increase in biological yield associated with an increase in canopy photosynthesis. At high plant density, the yield decrease with TRS was attributed to low harvest index associated with reduced reproductive partitioning. ImplicationsCotton cultivation relying solely on vegetative branching can be an alternative to obtain moderate yields and economic benefits under conditions of low plant density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.