Abstract
Abstract This paper assesses the effects of autocorrelation on parameter estimates of affine term structure models (ATSM) when principal components analysis is used to extract factors. In contrast to recent studies, we design and run a Monte Carlo experiment that relies on the construction of a simulation design that is consistent with the data, rather than theory or observation, and find that parameter estimation from ATSM is precise in the presence of serial correlation in the measurement error term. Our findings show that parameter estimation of ATSM with principal component based factors is robust to autocorrelation misspecification.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have