Abstract

The immediate purpose of the experiment was to establish a means of introducing specific mitochondrially encoded mutant genes into mice. Mouse teratocarcinoma stem cells were used as vehicles for the cytoplasmic markers because of their known capacity for normal somatic and germinal differentiation after injection into blastocysts. The mutation of choice, chloramphenicol resistance (CAP(R)), was first produced in a melanoma cell line by mutagenesis and selection. The CAP(R) trait was then transferred from a resistant melanoma cell to a sensitive (CAP(S)) teratocarcinoma cell by fusing to the latter only the cytoplasmic portion of the CAP(R) donor. This indirect route demonstrated the cytoplasmic provenance of the mutation. Protein synthesis in mitochondria isolated from the cybrid, or cytoplasmic hybrid, cells was barely affected by chloramphenicol, in contrast to the inhibitory influence of the drug on mitochondria of the parent teratocarcinoma line. Cells of the cybrid clone resembled teratocarcinoma cells and retained their ability to form diverse tissues in solid tumors produced from subcutaneous grafts. Cells from the tumors were retransplanted and were tested periodically by culture in chloramphenicol; they were found to be stably CAP(R) even after 16 weeks in vivo in the absence of the selective agent. The CAP(R) cybrids were microinjected into blastocysts of another inbred strain and, after transfer to foster mothers, mosaic mice were obtained. They comprised both cybrid- and blastocyst-derived cells in various tissues, as indicated by strain-specific nuclear markers. These results demonstrate successful normal differentiation of the CAP(R) lineage in vivo. Teratocarcinoma cybrids thus offer a practical portal of entry of preselected mitochondrial genes into mice. This will ultimately permit in vivo investigation of maternally transmitted traits, of mitochondrial genetic influences in specialized cells, and of possible roles of cytoplasmic genes in clinical and disease states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.