Abstract
Terahertz wave is an electromagnetic wave, whose wavelength is located between microwave wavelength and infrared wavelength. Based on low ionization and fingerprint characteristics, it has great potential applications in biomedical field, especially in the intraoperative localization and qualitative diagnosis of tumors. Glioma is the most urgent tumor for positioning qualitative diagnosis. Owing to its invasiveness and heterogeneity, it is easy to relapse after resection and has a significant influence on the nerve function of adjacent brain regions. Therefore, rapid determination of tumor boundary and pathological characteristics is an important prerequisite for accurate diagnosis, treatment and clinical research of glioma. Here, we summarize the biophysical technology of glioma diagnosis, and expound the new technique of terahertz wave and its research results in diagnosis of glioma. Furthermore, based on the research progress of integrated diagnosis of glioma histopathology and molecular pathology, we propose a hypothesis that different molecular subtypes of tumor tissue may have a consistent 'differential terahertz wave protein composition' of terahertz tumor subtype recognition mechanism. Finally, combining the biological characteristics of brain tissue and the potential of glioma marker detection in body fluids, we discuss the clinical application model and prospects of terahertz technologies in glioma detection.
Highlights
We summarize the biophysical technology of glioma diagnosis, and expound the new technique of terahertz wave and its research results in diagnosis of glioma
Furthermore, based on the research progress of integrated diagnosis of glioma histopathology and molecular pathology, we propose a hypothesis that different molecular subtypes of tumor tissue may have a consistent 'differential terahertz wave protein composition' of terahertz tumor subtype recognition mechanism
应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性 Birefringence characteristics of magnesium oxide crystal in terahertz frequency region by using terahertz focal plane imaging 物理学报
Summary
图 1 基于“组织病理”和“分子病理”联合诊断标准 (a) 肿瘤细胞形态学特征; (b) 胶质瘤分子分型 Fig. 1. Based on a combination of histopathology and molecular pathology: (a) Morphological characteristics of tumor cells; (b) molecular typing of gliomas. 由于影像学 “定位”和病理学“定性”无法完美结合, 当前临床上 主要依赖影像学技术行手术前规划, 依靠可见光波 段显微镜进行手术, 当手术中肿瘤边界区域难以抉 择时, 往往根据术者经验判断, 先行切除少量临界 组织进行快速 (15—60 min) 术中病理检测来获得 初步定性提示, 再根据提示判断是否已经到达肿瘤 边界. 1) 弥补术中快速 病理检测的局限: 在手术中, 部分患者组织病理学 未见某种特定肿瘤大体特征, 但依据其分子特点, 仍可做出诊断, 辅助手术决策 (如存在 IDH 突变、 1p/19q 共缺失, 则高度提示少突胶质细胞瘤的诊 断结果); 2) 辅助手术策略的制定: 例如, IDH 突变 型胶质瘤术后预后良好, 在手术实行全切方案最. 佳, 若术中快速获取的这一结果, 可供主刀医师进 行术中决策; 3) 术中精准划定肿瘤边界: 胶质瘤具 有极强的侵袭性和异质性, 依据视觉判断和影像导 航难以实现精准的边界识别, 多切造成残疾、少切 极易复发, 术中快速病理, 可以实现神经医生“定 位同时定性”的术中病理学边界划定追求; 4) 为术 后综合治疗方案的制定提供更早、更全面的分子病 理学依据. 当前主流的胶质瘤“定位定性”技术如图 2 所 示, 主要分为影像学技术与病理学技术、分子生物 学技术等, 表 1 重点阐述这些技术的优缺点. 电子计算机断层扫描 (computed tomography, CT)[23,24] 又称 X 射线电子计算机断层扫描仪, 分 为平扫和增强扫描, 具有高分辨率、无前后重叠、 病灶细节清晰、分期准确、扫描时间短等诸多优点. CT 可显示颅内占位性病变, 能较清楚的对比分析 术后渗血或积血, 因此该技术可减少积血对胶质瘤 术后影像学诊断所受的干扰; 可有效检测脑组织血
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have